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Abstract
In the present paper, we devote our aspiration to some initial and final value prob-
lems for a class of space-fractional diffusion equation with time-dependent diffusivity
factor. For the initial value problem (IVP), we investigate the stability of the solution
concerning the data and the fractional order. For the final value problem, we prove the
ill-posedness and suggest a filter method to regularize the problem. Explicit conver-
gence rate of Hölder type is established. Finally, several numerical examples based on
the finite difference approximation and the discrete Fourier transform are performed
to demonstrate the effectiveness of the proposed method.

Keywords Space-fractional diffusion equation · Ill-posed problem · Filter
regularization · Lipschitz continuity
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1 Introduction

In recent decades, the fractional calculus has become a very bewitching area to
researchers due to its challenges and convincing applications in the real world. Besides
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the common applications of fractional calculus which are now very famous in engi-
neering, the reader may refer to [35] for an updated collection of applications of
fractional calculus in the real world including the field of physics, signal and image
processing, biology, environmental science, economic, etc. Comparing to the model
using the ordinary derivative, the fractional model can be more adequate thanks to the
advantages of the memory effect of the fractional derivative. However, this memory
effect (or nonlocality) at the same time yields much more difficulties in solving these
models (see for instance [48,49]) for a discussion on the difficulty of the model with
fractional derivative).

The space-fractional diffusion equation (SFDE) is derived by replacing the standard
Laplacian by its fractional version defined as (1.2). In physical terms, space-fractional
diffusion is obtained if one replaces the Gaussian statistics of the classical Brow-
nian motion with a stable probability distribution, resulting in a Levy flight (see
[3,11,13,31]). It appears in many practical applications such as in the theory of vis-
coelasticity and viscoplasticity (mechanics), in the modeling of polymers and proteins
(biochemistry), in the transmission of ultrasoundwaves (electrical engineering), and in
the modeling of human tissue under mechanical loads (medicine). The forward prob-
lem for SFDE which is a well-posed one, has been studied deeply in recent years (see
[9,12,29,32,37,41] and the references given there). In comparison with the forward
problem, the backward problem for SFDE is usually more difficult to solve because of
its ill-posedness. Backward problem for diffusion equation has many applications in
practice such as the hydrology [25], material science [28], groundwater contamination
[34], image processing [4,44]. The backward problem here is understood in the fol-
lowing sense: Given the data at the terminal time T , the aspiration is to reconstruct the
historical distribution at an earlier time t < T . Particularly, we studied the following
backward problem

{
ut (x, t) + λ(t)(−�)αu(x, t) = �(x, t), t ∈ [0, T ], x ∈ R,

u(x, T ) = g(x), x ∈ R,
(1.1)

where 0 < α ≤ 1 is the fractional parameter, λ(t) is the time-dependent diffusivity,
g(x) is the final data, �(x, t) is the source function and the fractional Laplacian is
defined pointwise by

(−�)αφ(x) = α22α� (0.5 + α)√
π� (1 − α)

P.V .

∫
R

φ(x) − φ(y)

|x − y|1+2α dy. (1.2)

Here, P.V. stands for the principle value

P.V .

∫
R

φ(x) − φ(y)

|x − y|1+2α dy = lim
ε→0

∫
R\{|x−y|≤ε}

φ(x) − φ(y)

|x − y|1+2α dy. (1.3)
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The forward model associated with problem (1.1) is model (2.1) where the data
is given at initial time t = 0, i.e., u(x, 0) = ϕ(x). Unlike the constant diffusivity
which is commonly used in the study of the diffusion equation, the diffusivity in this
paper is non-constant, but a time-dependent function. The time-dependent diffusion
coefficient appears in many phenomena. For instance, it appears in the diffusion of
the population of photogenerated species in organic semiconductors [27], the methane
diffusion phenomena in [5], the transient dynamics of diffusion-controlled bimolecular
reactions in liquids [24], the hydrodynamic diffusion phenomena [30] and so on. The
advantage of non-constant diffusivity was studied very carefully by experiment in
[8,10,26,42].

The model (1.1) generalizes some of the previous ones. Particularly, the backward
heat conduction problem (BHCP) can be obtained from (1.1) by setting α := 1. The
BHCP is a classical ill-posed problem that has been studied extensively for decades.
In fact, there is a vast literature on the BHCP including the classical works in [2,7,
14,15,19,23,36,39,43]. In the current paper, we are more interested in the fractional
case of 0 < α < 1 where it is called the backward problem for the space-fractional
diffusion equation. The seminal works in this problem refer to Zheng and Zhang in
[48–50] in which they have studied the problem (1.1) with � := 0 and λ := 1. It was
mentioned in [48] that problem is ill-posed in the sense of Hadamard. However, proof
of this conclusion has not been yet provided. In [22], the authors extended the work
in [48–50] by investigating the problem (1.1) with λ := 1. Again, the ill-posedness
was also claimed without proof in [22]. Other remarkable works related to problem
(1.1) including its nonlinear cases and the Riesz–Feller diffusion cases can be found
in [18,20,38,40,45,46].

One of the objectives of this paper is to supplement the theory of problem (1.1)
by providing detailed proof of its ill-posedness which is not trivial. As a next step,
we propose a filter-type regularization method to achieve reliable approximations to
the solution of the problem. We emphasize that problem (1.1) is more difficult to deal
with, compared to its homogenous or classical versions. The difficulties naturally arise
from the nonlocality of fractional derivative and nonzero right-hand side. The nonlo-
cality will make the finite difference matrix is not spare while the nonzero right-hand
side makes the problem is more complicated. Here, inspired by the convolution reg-
ularization method for the classical backward diffusion equation (α = 1) in [33], we
proposed a filter method basing on the Fourier transform to achieve Hölder approx-
imations to the solution of the investigated problem. Another important part of this
paper is devoted to some regularity results of the forward problem (2.1). It is important
to observe the forward problem because there always exist relations between forward
and backward problems. For instance, using some properties of the forward problem,
one may explain or derive the nature of the imposed condition on the backward one.
In the current paper, using regularity results of the forward problem, we provide some
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explanation on the nature of the a priori assumption imposed to the problem in order
to establish the Hölder error estimate.

The rest of this paper is divided into four sections. In Sect. 2, we establish some
regularity results of the associated forward problem including the fractional parameter-
continuity property. Section 3 is devoted to the analysis of the ill-posed structure of
problem (1.1) and its treatment by the filter regularization method. The convergence
rate is also presented in this section. Section 4 provides two numerical examples,
mainly based on the finite difference scheme and the discrete Fourier transform, to
illustrate the theoretical results. Finally, we end up this paper by Sect. 5 summarizing
the achievements obtained in the paper.

2 Some Regularity Results for the Forward Problem

Throughout this paper, we assume that there exists two positive numbers M1 and M2

such that

0 < M1 ≤ λ (t) ≤ M2,

for all t ∈ [0, T ]. This assumption is quite natural since the diffusivity is usually
positive and finite.We begin this section by introducing some notations that are needed
for the analysis in the next sections. We always denote ‖·‖ = ‖·‖L2(R) the standard
L2-norm. The Fourier transform of a function g will be defined as

ĝ (ξ) := F (g) (ξ) = 1√
2π

∫
R

g(s)e−isξds,

and its inversion

g(x) := F−1 (ĝ) (x) = 1√
2π

∫
R

ĝ (ξ) eixξdξ .

For s > 0, Hs (R) stands for the standard Sobolev space

Hs (R) :=
{
v ∈ L2(R) such that ‖v‖2s :=

∫
R

(
1 + |ξ |2

)s |̂v(ξ)|2dξ < ∞
}

.

For a Banach space X , we denote by L p (0, T ; X) andC ([0, T ]; X) the Banach space
of real functions u : [0, T ] → X measurable, such that

‖u‖L p(0,T ;X) =
(∫ T

0
‖u (·,)‖p

X dt

)1/p

< ∞, 1 ≤ p < ∞,

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u (·,)‖X < ∞, p = ∞,
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‖u‖C([0,T ];X) = sup
0≤t≤T

‖u (·,)‖X < ∞.

In this section, we present some properties of the forward problem associated with
problem (1.1), i.e., the following problem

{
vt (x, t) + λ(t)(−�)αv(x, t) = �(x, t), t ∈ [0, T ], x ∈ R,

v(x, 0) = ϕ(x), x ∈ R.
(2.1)

For ease of presentation, we refer problem (2.1) with respect to the fractional order
α as problem (FPα). It is clear that problem (FP1) stands for the classical forward
diffusion problem. Put

�(t) =
∫ t

0
λ(s)ds.

Taking the Fourier transformwith respect to the space variables for both sides of (2.1),
we get

⎧⎨
⎩

∂

∂t
v̂α(ξ, t) + |ξ |2αλ(t )̂vα(ξ, t) = �̂(ξ, t),

v̂α(ξ, 0) = ϕ̂(ξ).

Then, we obtain

v̂α(ξ, t) = e−�(t)|ξ |2α ϕ̂(ξ) +
∫ t

0
e−|ξ |2α(�(t)−�(s))�̂(ξ, s))ds.

The solution of (2.1) is then written as

vα(x, t) = 1√
2π

∫
R

v̂α(ξ, t)eixξdξ,

Using this representation, we establish the following result concerning the continuity
of the solution of (2.1) with respect to the fractional parameter. This type of result may
be called the parameter continuity result (see [6]).

Theorem 2.1 Let v be the solution of classical diffusion problem (FP1) and vα be the
solution of problem (FPα). Assume that � ∈ L2(0, T ;H3−2α(R)) and the initial data
ϕ ∈ H3−2α(R), then there exists a positive constant K := K[ϕ, �] such that

sup
t∈[0,T ]

‖(v − vα) (·, t)‖ ≤ K |1 − α| .
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Proof From v be the solution of problem (FP1), and vα be the solution of problem
(FPα), we have

v̂(ξ, t) = e−�(t)|ξ |2 ϕ̂(ξ) +
∫ t

0
e−|ξ |2(�(t)−�(s))�̂(ξ, s))ds,

v̂α(ξ, t) = e−�(t)|ξ |2α ϕ̂(ξ) +
∫ t

0
e−|ξ |2α(�(t)−�(s))�̂(ξ, s))ds.

By directly computation, and Hölder inequality, one has

‖(̂vα − v̂) (·, t)‖2 ≤ 2
∫
R

∣∣∣e−�(t)|ξ |2 − e−�(t)|ξ |2α
∣∣∣2|ϕ̂(ξ)|2dξ

+ 2
∫
R

(∫ t

0

∣∣∣e−|ξ |2(�(t)−�(s)) − e−|ξ |2α(�(t)−�(s))
∣∣∣ ∣∣�̂(ξ, s)

∣∣ ds)2

dξ

≤ 2
∫
R

∣∣∣e−�(t)|ξ |2 − e−�(t)|ξ |2α
∣∣∣2|ϕ̂(ξ)|2dξ︸ ︷︷ ︸

I1(t)

+ 2T
∫ t

0

∫
R

∣∣∣e−|ξ |2(�(t)−�(s)) − e−|ξ |2α(�(t)−�(s))
∣∣∣2∣∣�̂(ξ, s))

∣∣2dξds︸ ︷︷ ︸
I2(t)

.

(2.2)

To obtain a stability estimate with respect to the fractional parameter α, the idea is
now to evaluate the inside exponential-difference term of I1 and I2. To do so, let us
denote

D1 = {ξ | |ξ | ≥ 1} and D2 = {ξ | |ξ | < 1} .

We have the following cases.
Case 1: ξ ∈ D1. Using the Lagrange mean value theorem for f (x) = e−x , x ≥ 0,
there exists a positive point ξ1 ∈ [|ξ |2α (�(t) − �(s)) , |ξ |2 (�(t) − �(s))

]
such that

∣∣∣e−|ξ |2(�(t)−�(s)) − e−|ξ |2α(�(t)−�(s))
∣∣∣ = (�(t) − �(s)) e−ξ1

(
|ξ |2 − |ξ |2α

)
≤ (�(t) − �(s)) e−|ξ |2α(�(t)−�(s))

(
|ξ |2 − |ξ |2α

)
≤ 1

|ξ |2α
(
|ξ |2 − |ξ |2α

)
= |ξ |2−2α − 1.

Again, by using Lagrange mean value theorem one more time, but for g(α) = aα, a ≥
1, there exists a positive number α1 ∈ [0, 2 − 2α] such that

|ξ |2−2α − 1 = 2|ξ |α1 log |ξ | (1 − α) .

123



Determination of Initial Distribution for a…

Since 0 ≤ log x ≤ x for all x ≥ 1, we can write that

∣∣∣e−|ξ |2(�(t)−�(s)) − e−|ξ |2α(�(t)−�(s))
∣∣∣ ≤ 2|ξ |α1 log |ξ | |1 − α| ≤ 2|ξ |3−2α |1 − α| .

Case 2: ξ ∈ D2. By adapting the same procedure as in Case 1, there exists a positive
point ξ2 ∈ [|ξ |2 (�(t) − �(s)) , |ξ |2α (�(t) − �(s))

]
such that

∣∣∣e−|ξ |2α(�(t)−�(s)) − e−|ξ |2(�(t)−�(s))
∣∣∣

= (�(t) − �(s)) e−ξ2
(
|ξ |2α − |ξ |2

)
≤ �(T )

(
|ξ |2α − |ξ |2

)
.

Once again, by the Lagrange mean value theorem, there exists a positive α2 ∈ [2α, 2]
such that

|ξ |2α − |ξ |2 = 2|ξ |α2 |log |ξ || (1 − α) ≤ 2|ξ |α2−1 (1 − α) ≤ 2 (1 − α) .

Therefore,

∣∣∣e−|ξ |2α(�(t)−�(s)) − e−|ξ |2(�(t)−�(s))
∣∣∣ ≤ 2�(T ) |1 − α| .

Thus, we arrive the following estimates

I1 (t) ≤ 4
(
1 + �2(T )

)
|1 − α|2

∫
R

(
1 + |ξ |2

)3−2α|ϕ̂(ξ)|2dξ

= 4
(
1 + �2(T )

)
|1 − α|2 ‖ϕ‖2H3−2α(R)

, (2.3)

I2 (t) ≤ 4
(
1 + �2(T )

)
|1 − α|2

∫ T

0

∫
R

(
1 + |ξ |2

)3−2α∣∣�̂(ξ, s))
∣∣2dξds

= 4
(
1 + �2(T )

)
|1 − α|2 ‖�‖2L2(0,T ;H3−2α(R))

. (2.4)

By combining (2.2), (2.3) and (2.4), we arrive at the final estimate

‖(vα − v) (·, t)‖ ≤ 2
√
2 (1 + �(T ))

(
‖ϕ‖H3−2α(R) + √

T ‖�‖L2(0,T ;H3−2α(R))

)
|1 − α|

= K |1 − α| ,

where K := K[ϕ, �] = 2
√
2 (1 + �(T ))

(
‖ϕ‖H3−2α(R) + √

T ‖�‖L2(0,T ;H3−2α(R))

)
.

The proof is complete. 	


Next, we present some properties of the solution of (FPα).

Theorem 2.2 The following statements hold:
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a. For 0 ≤ p ≤ α, if ϕ ∈ L2 (R) and � ∈ L2
(
0, T ; L2 (R)

)
, then vα (·, t) ∈ Hp (R)

for all 0 < t ≤ T and

‖vα(·, t)‖Hp(R) ≤ D(t)
(
‖ϕ‖ + ‖�‖L2(0,T ;L2(R))

)
,

where D is a positive function depends on t defined by

D(t) = 2max

{√
1 + tM1

tM1
,

√
T

2M1
+ T 2

}
.

b. For q ≥ 0, if ϕ ∈ Hq (R) and � ∈ L2 (0, T ;Hq (R)), then vα ∈
L∞ (0, T ;Hq (R)). More precisely,

‖vα‖L∞(0,T ;Hq (R)) ≤ √
2max {1, T } (‖ϕ‖Hq (R) + ‖�‖L2(0,T ;Hq (R))

)
.

c. If ϕ ∈ L2 (R) and � ∈ L2 (0, T ;Hα (R)), then vα ∈ C
(
(0, T ] , L2 (R)

) ∩
L∞ (

0, T ; L2 (R)
)
.

d. If ϕ ∈ H2α (R) and � ∈ L2 (0, T ;Hα (R)), then vα ∈ C
(
[0, T ] , L2 (R)

) ∩
L∞ (0, T ;Hα (R)) .

Proof a.) Since ‖vα(·, t)‖Hp(R) ≤ ‖vα(·, t)‖Hα(R) for all 0 ≤ p ≤ α, it suffices to
prove the part a of the theorem for p = α. By Hölder inequality , we see that

‖vα(·, t)‖2Hα(R) =
∫
R

(
1 + |ξ |2

)α

e−2|ξ |2α�(t)
(

ϕ̂(ξ) +
∫ t

0
e|ξ |2α�(s)�̂(ξ, s))ds

)2

dξ

≤ 2
∫
R

(
1 + |ξ |2

)α

e−2|ξ |2α�(t)|ϕ̂(ξ)|2dξ

+ 2
∫
R

(
1 + |ξ |2

)α

e−2|ξ |2α�(t)
(∫ t

0
e|ξ |2α�(s)�̂(ξ, s))ds

)2

dξ

≤ 2
∫
R

(
1 + |ξ |2)α

1 + 2|ξ |2α�(t)
|ϕ̂(ξ)|2dξ

+ 2t
∫

|ξ |≤1

((
1 + |ξ |2

)α

e−2|ξ |2α�(t)
∫ t

0
e2|ξ |2α�(s)ds

∫ t

0

∣∣�̂(ξ, s))
∣∣2ds)dξ

+ 2t
∫

|ξ |>1

((
1 + |ξ |2

)α

e−2|ξ |2α�(t)
∫ t

0
e2|ξ |2α�(s)ds

∫ t

0

∣∣�̂(ξ, s))
∣∣2ds)dξ.

Since �(t) ≥ M1t for all 0 < t ≤ T , we can write that

‖vα(·, t)‖2Hα(R) ≤ 2
∫
R

(
1 + |ξ |2)α

1 + tM1|ξ |2α |ϕ̂(ξ)|2dξ + 2α+1T 2
∫ T

0

∫
R

∣∣�̂(ξ, s))
∣∣2dξds
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+ 2T
∫

|ξ |>1

⎛
⎝(1 + |ξ |2

)α

e−2|ξ |2α�(t)
∫ t

0

d
(
e2|ξ |2α�(s)

)
2|ξ |2αλ(s)ds

∫ T

0

∣∣�̂(ξ, s))
∣∣2ds

⎞
⎠dξ

≤ 2 (1 + tM1)

tM1

∫
R

(
1 + |ξ |2)α(
1 + |ξ |2α) |ϕ̂(ξ)|2dξ + 2α+1T 2 ‖�‖2L2(0,T ;L2(R))

+ T

M1

∫
|ξ |>1

⎛
⎝(

1 + |ξ |2)αe−2|ξ |2α�(t)

|ξ |2α
∫ t

0

d
(
e2|ξ |2α�(s)

)
ds

∫ T

0

∣∣�̂(ξ, s))
∣∣2ds

⎞
⎠dξ

≤ 2α+1
(
1 + tM1

tM1
‖ϕ‖2 + T 2 ‖�‖2L2(0,T ;L2(R))

)

+ 2αT

M1

∫
R

e−2|ξ |2α�(t)
(
e2|ξ |2α�(t) − 1

) ∫ T

0

∣∣�̂(ξ, s))
∣∣2dsdξ

≤ 4

(
1 + tM1

tM1
‖ϕ‖2 +

(
T

2M1
+ T 2

)
‖�‖2L2(0,T ;L2(R))

)
,

which means that vα (·, t) ∈ Hα (R) for all t ∈ (0, T ]. The above estimate can be
rewritten as

‖vα(·, t)‖Hα(R) ≤ D(t)
(
‖ϕ‖ + ‖�‖L2(0,T ;L2(R))

)
.

The part (a) of this theorem is proved.
b.) For q ≥ 0, we have

‖vα(·, t)‖2Hq (R) =
∫
R

(
1 + |ξ |2

)q
e−2|ξ |2α�(t)

(
ϕ̂(ξ) +

∫ t

0
e|ξ |2α�(s)�̂(ξ, s))ds

)2

dξ

≤ 2
∫
R

(
1 + |ξ |2

)q |ϕ̂(ξ)|2dξ

+ 2
∫
R

(
1 + |ξ |2

)q
e−2|ξ |2α�(t)

(∫ t

0
e|ξ |2α�(s)�̂(ξ, s))ds

)2

dξ

≤ 2 ‖ϕ‖2Hq (R)

+ 2T
∫
R

((
1 + |ξ |2

)q
e−2|ξ |2α�(t)

∫ t

0
e2|ξ |2α�(s)ds

∫ t

0

∣∣�̂(ξ, s))
∣∣2ds)dξ

≤ 2 ‖ϕ‖Hq (R) + 2T 2
∫ T

0

∫
R

(
1 + |ξ |2

)q ∣∣�̂(ξ, s))
∣∣2dξds

= 2
(
‖ϕ‖2Hq (R) + T 2 ‖�‖2L2(0,T ;Hq (R))

)
.

(2.5)

The right-hand sideof (2.5) is independent of t ,we conclude thatvα ∈ L∞ (0, T ;Hq (R)).
Moreover, (2.5) also implies that

‖vα‖L∞(0,T ;Hq (R)) ≤ √
2max {1, T } (‖ϕ‖Hq (R) + ‖�‖L2(0,T ;Hq (R))

)
.
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The part (b) is proved.
c.) By applying the result of part (b) with q = 0, we conclude that vα ∈
L∞ (

0, T ; L2 (R)
)
. Now we will prove that vα ∈ C

(
(0, T ] , L2 (R)

)
. For t0 ∈ (0, T ],

let us evaluate the limit lim
t→t+0

‖̂vα(·, t) − v̂α(·, t0)‖. We have

v̂α(ξ, t) − v̂α(ξ, t0)

=
(
e−|ξ |2α�(t) − e−|ξ |2α�(t0)

)
ϕ̂(ξ)︸ ︷︷ ︸

I3(t)

+
∫ t

t0
e|ξ |2α(�(s)−�(t))�̂(ξ, s))ds︸ ︷︷ ︸

I4(t)

+
(
e−|ξ |2α�(t) − e−|ξ |2α�(t0)

) ∫ t0

0
e|ξ |2α�(s)�̂(ξ, s))ds︸ ︷︷ ︸

I5(t)

.

Since 1 − e−x ≤ x for all x ≥ 0, it yields that

∣∣∣e|ξ |2α�(t) − e|ξ |2α�(t0)
∣∣∣ = e|ξ |2α�(t)

(
1 − e−|ξ |2α(�(t)−�(t0))

)
≤ |ξ |2αe|ξ |2α�(t) (�(t) − �(t0))

≤ M2|ξ |2αe|ξ |2α�(t) (t − t0) .

Then, we can assert that

‖I3‖2 =
∫
R

(
e−|ξ |2α�(t) − e−|ξ |2α�(t0)

)2|ϕ̂(ξ)|2dξ

=
∫
R

∣∣∣e|ξ |2α�(t) − e|ξ |2α�(t0)
∣∣∣2

e2|ξ |2α(�(t)+�(t0))
|ϕ̂(ξ)|2dξ

≤ M2
2(t − t0)

2
∫
R

|ξ |4α
e2|ξ |2α�(t0)

|ϕ̂(ξ)|2dξ

≤ M2
2(t − t0)2

2�2(t0)

∫
R

|ϕ̂(ξ)|2dξ

≤ M2
2‖ϕ‖2

2M2
1t

2
0

(t − t0)
2.

In view of the Hölder inequality, one has

‖I4‖2 =
∫
R

(∫ t

t0
e|ξ |2α(�(s)−�(t))�̂(ξ, s))ds

)2

dξ

≤
∫
R

(∫ t

t0
e2|ξ |2α(�(s)−�(t))ds

∫ t

t0

∣∣�̂(ξ, s))
∣∣2ds)dξ
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≤ (t − t0)
∫
R

∫ T

0

∣∣�̂(ξ, s))
∣∣2dsdξ

= ‖�‖2L2(0,T ;L2(R))
(t − t0) .

The remaining task is now to find a bound for ‖I5‖. In fact, we have

‖I5‖2 =
∫
R

∣∣∣e|ξ |2α�(t) − e|ξ |2α�(t0)
∣∣∣2

e2|ξ |2α(�(t)+�(t0))

(∫ t0

0
e|ξ |2α�(s)�̂(ξ, s))ds

)2

dξ

≤ M2
2(t − t0)

2
∫
R

(
|ξ |4α

e2|ξ |2α�(t0)

∫ t0

0
e2|ξ |2α�(s)ds

∫ t0

0

∣∣�̂(ξ, s))
∣∣2ds

)
dξ

= M2
2(t − t0)

2
∫
R

⎛
⎝ |ξ |4α
e2|ξ |2α�(t0)

∫ t0

0

d
(
e2|ξ |2α�(s)

)
2|ξ |2αλ(s)ds

∫ t0

0

∣∣�̂(ξ, s))
∣∣2ds

⎞
⎠ dξ

≤ M2
2(t − t0)2

2M1

∫
R

⎛
⎝ |ξ |2α

(
e2|ξ |2α�(t0) − 1

)
e2|ξ |2α�(t0)

∫ t0

0

∣∣�̂(ξ, s))
∣∣2ds

⎞
⎠ dξ

≤ M2
2(t − t0)2

2M1

∫ T

0

∫
R

|ξ |2α ∣∣�̂(ξ, s))
∣∣2dξds

≤ M2
2

2M1
‖�‖2L2(0,T ;Hα(R))

(t − t0)
2.

Having disposed of this preliminary step, we can now return to the main estimate

lim
t→t+0

‖vα(·, t) − vα(·, t0)‖ = lim
t→t+0

‖̂vα(·, t) − v̂α(·, t0)‖

≤ lim
t→t+0

(‖I3‖ + ‖I4‖ + ‖I5‖) = 0.

In the same manner, we can prove that lim
t→t−0

‖vα(·, t) − vα(·, t0)‖ = 0 for all t0 ∈
(0, T ]. It implies that

lim
t→t0

‖vα(·, t) − vα(·, t0)‖ = 0.

This leads to vα ∈ C
(
(0, T ] ; L2 (R)

) ∩ L∞ (
0, T ; L2 (R)

)
as claimed.

d.) Applying the result of part b for q = α which arrives at vα ∈ L∞ (0, T ;Hα (R)) .

The remain task is to solve lim
t→0+ ‖vα(·, t) − vα(·, 0)‖ = 0. For I4 and I5, the estimate

is the same with part (c). The rest is to re-evaluate I3. We have

‖I3‖2 ≤ M2
2t

2
∫
R

|ξ |4α|ϕ̂(ξ)|2dξ ≤ M2
2t

2
∫
R

(
1 + |ξ |2

)2α|ϕ̂(ξ)|2dξ = M2
2 ‖ϕ‖2H2α(R)

t2.
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This leads to lim
t→0+ ‖vα(·, t) − vα(·, 0)‖ = 0. The theorem is completely proved. 	


3 The Ill-Posedness and RegularizationMethod for the Backward
Problem

This section is devoted to the investigation of the backward problem (1.1) which is
the main result of the current paper. Using the same Fourier technique as in Sect. 2,
after some elementary calculations, we get

û(ξ, t) = ĝ(ξ)e|ξ |2α(�(T )−�(t)) −
∫ T

t
e|ξ |2α(�(s)−�(t))�̂(ξ, s)ds. (3.1)

Thus, the exact solution of backward problem (1.1) is obtained by the inverse Fourier
transform

u(x, t) = 1√
2π

∫
R

(
ĝ(ξ)e|ξ |2α(�(T )−�(t)) −

∫ T

t
e|ξ |2α(�(s)−�(t))�̂(ξ, s)ds

)
eixξdξ .

(3.2)

Let us take a look at the formula (3.2). It is not difficult to see that (3.2) contains the
quantity e|ξ |2α�(T ) which will go to infinity as |ξ | tends to infinity. Thus, the solution
of problem (1.1) is unstable at the high frequencies of ξ . As a result, the ill-posedness
appears. This property is quite consistent with the classical case α = 1. To be more
precise, we present the following theorem.

Theorem 3.1 The backward problem (1.1) is ill-posed in the Hadamard’s sense.

Proof The following example demonstrates the ill-posedness of (1.1). For any
n ∈ N and n ≥ 2. Define �n := {ξ ∈ R; 1 ≤ ξ ≤ n}, let gn ∈ L2 (R), �n ∈
L2

(
0, T ; L2 (R)

)
be the measured data such that

ĝn (ξ) =
{
ĝ (ξ) + 1

nγ , if ξ ∈ �n,

ĝ (ξ) , if ξ ∈ R\�n,

�̂n(ξ, s) =
{

�̂(ξ, s) + 1
n , if ξ ∈ �n,

�̂(ξ, s), if ξ ∈ R\�n,

where γ ∈ (0, 1).
Using Parseval’s identity, we see that

‖gn − g‖ = ‖ĝn − ĝ‖ =
(∫

�n

1

n2γ
dξ

) 1
2 ≤ 1√

n2γ−1
→ 0 as n → ∞,
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‖�n − �‖L2(0,T ;L2(R)) =
(∫ T

0

(∫
�n

1

n2
dξ

)2

ds

) 1
2

≤
√
T√
n

→ 0 as n → ∞.

Let u and un be two solutions of problem (1.1) correspond to the data (g, �) and
(gn, �n), respectively, i.e.,

û(ξ, t) = ĝ(ξ)e|ξ |2α(�(T )−�(t)) −
∫ T

t
e|ξ |2α(�(s)−�(t))�̂(ξ, s)ds,

ûn(ξ, t) = ĝn(ξ)e|ξ |2α(�(T )−�(t)) −
∫ T

t
e|ξ |2α(�(s)−�(t))�̂n(ξ, s)ds.

We know that

‖(un − u) (·, t)‖2 = ‖(̂un − u) (·, t)‖2

=
∫

�n

∣∣∣∣∣e
|ξ |2α(�(T )−�(t))

nγ
−
∫ T

t

e|ξ |2α(�(s)−�(t))

n
ds

∣∣∣∣∣
2

dξ

= 1

n2γ

∫
�n

e2|ξ |2α(�(T )−�(t))dξ + 1

n2

∫
�n

(∫ T

t
e|ξ |2α(�(s)−�(t))ds

)2

dξ

− 2

n1+γ

∫
�n

∫ T

t
e|ξ |2α(�(T )+�(s)−2�(t))dsdξ

≥ 1

n2γ

∫
�n

e2|ξ |2α(�(T )−�(t))dξ − 2

n1+γ

∫
�n

∫ T

t
e|ξ |2α(�(T )+�(s)−2�(t))dsdξ

≥ 1 − 2Tnγ−1

n2γ

∫
�n

e2|ξ |2α(�(T )−�(t))dξ

= 1 − 2Tnγ−1

n2γ

∫ n

1
e2ξ

2α(�(T )−�(t))dξ

≥ 1 − 2Tnγ−1

n2γ

∫ n

1
e2ξ(�(T )−�(t))dξ

=
(
1 − 2Tnγ−1

) (
e2n(�(T )−�(t)) − e2(�(T )−�(t))

)
2 (�(T ) − �(t)) n2γ

.

This leads to

lim
n→∞ ‖(un − u) (·, t)‖ ≥ lim

n→∞

√(
1 − 2Tnγ−1

) (
e2n(�(T )−�(t)) − e2(�(T )−�(t))

)
√
2 (�(T ) − �(t))nγ

= +∞.

This proves the ill-posedness of the backward problem (1.1). The proof of this theorem
is complete. 	
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As in Theorem 3.1, the solution of backward problem (1.1) is unstable with respect
to the data. Thus, there is a demand for the regularization method to mitigate the
impact of this ill-posedness. Otherwise, the standard calculation may fail to describe
the solution. In addition, the final data in practice is obtained by measurement which
always contains error. To model this impact, for a noise level δ, let us denote that
measure data of (g, �) by (gδ, �δ) and (gδ, �δ) is naturally required to satisfy the
following error bound

max
{
‖gδ − g‖ , ‖�δ − �‖L2(0,T ;L2(R))

}
≤ δ. (3.3)

As previously mentioned, there are exponential growths in the solution leading to
the ill-posedness. Therefore, if one successfully control these growths, then the ill-
posedness will be overcome. For the regularization method in the unbounded domain,
the convolution regularization introduced in [33,47] is proved a very effective method.
Thismethodmay be simply considered as a very interesting application of the convolu-
tion properties of Fourier transform. In the current paper, we propose a filter approach
which is originally inspired by the convolution regularization in [33,47]. Rather than
dealing with an approximate problem in form of a convolution operator as in [33,47].
Based on Parseval’s equation, it is equivalent to modifying problem 1 to be equivalent
to modifying the Fourier problem of problem 1. In particular, we directly use the filter
called Fμ,β to regularize the problem (1.1). To be more precise, for μ > 0, β ≥ 0 the
Fμ,β is defined by

Fμ,β (ĝδ) (ξ) := ĝδ(ξ)

1 + μe|ξ |2α(�(T )+β)
,

Fμ,β

(
�̂δ

)
(ξ, t) := �̂δ(ξ, t)

1 + μe|ξ |2α(�(T )+β)
.

Using this filter, we consider the following regularized Fourier problem

⎧⎨
⎩

∂

∂t
ûδ

μ,β(ξ, t) + λ(t)(−�)α ûδ
μ,β(ξ, t) = Fμ,β

(
�̂δ

)
(ξ, t), t ∈ [0, T ], ξ ∈ R,

ûδ
μ,β(ξ, T ) = Fμ,β (ĝδ) (ξ), ξ ∈ R.

(3.4)

Using the same technique as in Sect. 2, the solution of problem (3.4) is obtained by

ûδ
μ,β(ξ, t) = e|ξ |2α(�(T )−�(t))

1 + μe|ξ |2α(�(T )+β)
ĝδ(ξ) −

∫ T

t

e|ξ |2α(�(s)−�(t))

1 + μe|ξ |2α(�(T )+β)
�̂δ(ξ, s)ds.

(3.5)
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Equivalently,

uδ
μ,β(x, t) =

∫
R

(
e|ξ |2α(�(T )−�(t))

1 + μe|ξ |2α(�(T )+β)
ĝδ(ξ)

−
∫ T

t

e|ξ |2α(�(s)−�(t))

1 + μe|ξ |2α(�(T )+β)
�̂δ(ξ, s)ds

)
eiξ xdξ. (3.6)

To perform the convergence analysis between the regularized and exact solution, we
first present the following auxiliary results.

Lemma 3.1 Let β, r , a > 0. Then, we have

1

βxr + e−xa
≤
(
2a

r

)r

β−1
(
1 + log

a

r r
√

β

)−r

for all x > 0.

Proof Applying inequality (a1 + a2)p ≤ 2p
(
a p
1 + a p

2

)
for all a1, a2, p > 0. We see

that

1

βxr + e−xa
≤ 2r(

r
√

βx + e− xa
r

)r =: 2r ( f1 (x))r .

By direct computation, we know that

f1 (x) ≤ f1

(
r

a
log

a

r r
√

β

)
= a

r r
√

β
(
1 + log a

r r√β

) .

Hence,

1

βxr + e−xa
≤
(
2a

r

)r

β−1
(
1 + log

a

r r
√

β

)−r

.

The proof is completed. 	


Lemma 3.2 Let α > 0, and 0 < a < b. Then, we have

xa

1 + αxb
≤ α− a

b , ∀x > 0.

Proof Consider the following function f2 (x) = xa

1+αxb
for x > 0. Then,

f2 (x) ≤ f2

((
a

α (b − a)

) 1
b
)

= b − a

b

(
a

b − a

) a
b

α− a
b
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=
(
b − a

b

)1− a
b (a

b

) a
b
α− a

b ≤ α− a
b for all x > 0

which completes the proof Lemma 3.2. 	

UseLemmas 3.1 and 3.2, we have the following propositionwhich is very important

for the proof of next theorems.

Proposition 3.1 The following inequality holds

e|ξ |2α(�(T )+β)

1 + μe|ξ |2α(�(T )+β)

≤
(
4α (� (T ) + β)

p

) p
2α

μ−1

(
1 + log

2α (� (T ) + β)

pμ
2α
p

)−p
2α (

1 + ξ2
) p

2
,

where p > 0.

Proof By Lemma 3.1, one has

e|ξ |2α(�(T )+β)

1 + μe|ξ |2α(�(T )+β)
= 1

μ + e−|ξ |2α(�(T )+β)
=

(
1 + ξ2

) p
2(

1 + ξ2
) p
2
(
μ + e−|ξ |2α(�(T )+β)

)

≤
(
1 + ξ2

) p
2

μ|ξ |p + e−|ξ |2α(�(T )+β)
=

(
1 + ξ2

) p
2

μ
(|ξ |2α) p

2α + e−|ξ |2α(�(T )+β)

≤
(
4α (� (T ) + β)

p

) p
2α

μ−1

(
1 + log

2α (� (T ) + β)

pμ
2α
p

)−p
2α (

1 + ξ2
) p

2

which completes the proof. 	

Proposition 3.2 The following inequality holds

e|ξ |2α�(T )

1 + μe|ξ |2α�(T )
≤
{

μϑ−1eϑ |ξ |2α�(T ), if ϑ ∈ (0, 1) ,

eϑ |ξ |2α�(T ), if ϑ ≥ 1.

Proof In case ϑ ≥ 1, the proof is obvious. In the remaining case, using Lemma 3.2,
one has

e|ξ |2α�(T )

1 + μe|ξ |2α�(T )
= e(1−ϑ)|ξ |2α�(T )

1 + μe|ξ |2α�(T )
eϑ |ξ |2α�(T )

≤ μϑ−1eϑ |ξ |2α�(T ).

The proof is completed. 	
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Now, we are in a position to present the convergence estimate. The first result reads
as follows.

Theorem 3.2 Let v1 and v2 be two solution of regularized problem (3.4) correspond
to the data (g1, �1) and (g2, �2), respectively, then we have

‖(v1 − v2) (·, t)‖ ≤ μ
�(t)+β
�(T )+β

−1
(
‖g1 − g2‖ + √

T ‖�1 − �2‖L2(0,T ;L2(R))

)
.

Proof We have

v̂1(ξ, t) = e|ξ |2α(�(T )−�(t))

1 + μe|ξ |2α(�(T )+β)
ĝ1(ξ) −

∫ T

t

e|ξ |2α(�(s)−�(t))

1 + μe|ξ |2α(�(T )+β)
�̂1(ξ, s)ds,

v̂1(ξ, t) = e|ξ |2α(�(T )−�(t))

1 + μe|ξ |2α(�(T )+β)
ĝ2(ξ) −

∫ T

t

e|ξ |2α(�(s)−�(t))

1 + μe|ξ |2α(�(T )+β)
�̂2(ξ, s)ds.

In view of Parseval’s identity, Lemma 3.2, one has

‖(v1 − v2) (·, t)‖ =
∥∥∥∥∥ e|·|2α(�(T )−�(t))

1 + μe|·|2α(�(T )+β)
(ĝ1(·) − ĝ2(·))

−
∫ T

t

e|·|2α(�(s)−�(t))

1 + μe|·|2α(�(T )+β)

(
�̂1(·, s) − �̂2(·, s)

)
ds

∥∥∥∥∥
≤
∥∥∥∥∥ e|·|2α(�(T )−�(t))

1 + μe|·|2α(�(T )+β)
(ĝ1(·) − ĝ2(·))

∥∥∥∥∥
+
∥∥∥∥∥
∫ T

t

e|·|2α(�(s)−�(t))

1 + μe|·|2α(�(T )+β)

(
�̂1(·, s) − �̂2(·, s)

)
ds

∥∥∥∥∥
≤ sup

ξ∈R
e|ξ |2α(�(T )−�(t))

1 + μe|ξ |2α(�(T )+β)
‖g1 − g2‖

+ √
T

⎛
⎝∫ T

0

∥∥∥∥∥ e|·|2α(�(s)−�(t))

1 + μe|·|2α(�(T )+β)

(
�̂1(·, s) − �̂2(·, s)

)∥∥∥∥∥
2

ds

⎞
⎠

1
2

≤ sup
ξ∈R

e|ξ |2α(�(T )−�(t))

1 + μe|ξ |2α(�(T )+β)
‖g1 − g2‖

+ √
T sup

ξ∈R
e|ξ |2α(�(T )−�(t))

1 + μe|ξ |2α(�(T )+β)
‖�1 − �2‖L2(0,T ;L2(R))

≤ μ
�(t)+β
�(T )+β

−1
(
‖g1 − g2‖ + √

T ‖�1 − �2‖L2(0,T ;L2(R))

)
.

The proof is complete. 	
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Next, we proceed to show the convergence rate between the regularized and the exact
solution. The most important theorem in this section can be stated as follows.

Theorem 3.3 Let δ ∈ (0, 1). Assume that there exist constants p,E0 such that the
exact solution satisfy the following a priori bound

‖u (·, t)‖Hp(R) ≤ E0, (3.7)

where p > 0, and E0 > δ
(

p
2α(�(T )+β)

) p
2α
. Let the measure data (gδ, �δ) satisfy

(3.3). Let u be the solution of backward problem (1.1) and uδ
μ,β be the solution of the

regularized problem (1.1). If the regularization parameter μ, β is selected by

μ = δ

E0
, β > 0, (3.8)

then for 0 ≤ t < T , the following convergence estimate holds

∥∥∥(uδ
μ,β − u

)
(·, t)

∥∥∥ ≤
(
1 + √

T
)
E

�(T )−�(t)
�(T )+β

0 δ
�(t)+β
�(T )+β

+
(
4α (� (T ) + β)

p

) p
2α

E0

⎛
⎝1 + log

2α (� (T ) + β)E
2α
p
0

pδ
2α
p

⎞
⎠

−p
2α

. (3.9)

Proof Let uμ,β be as in (3.6) which corresponds to the exact data, i.e.,

uμ,β(x, t) =
∫
R

ĝ(ξ)e|ξ |2α(�(T )−�(t)) − ∫ T
t e|ξ |2α(�(s)−�(t))�̂(ξ, s)ds

1 + μe|ξ |2α(�(T )+β)
eiξ xdξ.

From the triangle inequality, one has

∥∥∥uδ
μ,β (·, t) − u (·, t)

∥∥∥ ≤
∥∥∥uδ

μ,β (·, t) − uμ,β (·, t)
∥∥∥︸ ︷︷ ︸

J1(t)

+ ∥∥uμ,β (·, t) − u (·, t)∥∥︸ ︷︷ ︸
J2(t)

.

(3.10)

First, we evaluate J1. Using Theorem 3.2, and (3.8) , we obtain

J1 (t) ≤ μ
�(t)+β
�(T )+β

−1
(
‖g1 − g2‖ + √

T ‖�1 − �2‖L2(0,T ;L2(R))

)
≤
(
1 + √

T
)
E

�(T )−�(t)
�(T )+β

0 δ
�(t)+β
�(T )+β . (3.11)

The remaining task is to estimate J2. In fact, we have
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J2 (t) = ∥∥(uμ,β − u
)
(·, t)∥∥ = ∥∥(̂uμ,β − û

)
(·, t)∥∥

= μ

∥∥∥∥∥ e|·|2α(�(T )+β)

1 + μe|·|2α(�(T )+β)
û (·, t)

∥∥∥∥∥ .

By Proposition 3.1, (3.8), and (3.7), we arrive at the following estimates

J2 (t) ≤
(
4α (� (T ) + β)

p

) p
2α

μ−1

⎛
⎝1 + log

2α (� (T ) + β)

pμ
2α
p

⎞
⎠

−p
2α ∥∥∥∥(1 + |·|2

) p
2 û (·, t)

∥∥∥∥

=
(
4α (� (T ) + β)

p

) p
2α

⎛
⎜⎝1 + log

2α (� (T ) + β)E
2α
p
0

pδ
2α
p

⎞
⎟⎠

−p
2α

‖u (·, t)‖Hp(R)

≤
(
4α (� (T ) + β)

p

) p
2α
E0

⎛
⎜⎝1 + log

2α (� (T ) + β)E
2α
p
0

pδ
2α
p

⎞
⎟⎠

−p
2α

.

(3.12)

Plugging (3.11), (3.12) into (3.10), we get the conclusion (3.9). The theorem is proved.
	


Theorem 3.4 Let δ ∈ (0, 1). Assume that there exist constants ϑ,E1 such that the
exact solution satisfies the following a priori bound

(∫
R

e2ϑ |ξ |2α�(T ) |̂u (ξ, t)|2dξ
) 1

2 ≤ E1,

where ϑ,E1 > 0. Let the measure data the measured data gδ and the noisy source �δ

satisfy (3.3). If the regularization parameter μ, β are selected by

β = 0, μ =

⎧⎪⎨
⎪⎩
(

δ
E1

) �(T )
(1+ϑ)�(T )−�(t)

, if ϑ ∈ (0, 1) ,(
δ
E1

) �(T )
2�(T )−�(t)

, if ϑ ≥ 1,

then for 0 ≤ t < T , the following convergence estimate holds

∥∥∥(uδ
μ,β − u

)
(·, t)

∥∥∥ ≤

⎧⎪⎨
⎪⎩
(
2 + √

T
)
E

�(T )−�(t)
(1+ϑ)�(T )−�(t)
1 δ

ϑ�(T )
(1+ϑ)�(T )−�(t) if ϑ ∈ (0, 1)(

2 + √
T
)
E

�(T )−�(t)
2�(T )−�(t)
1 δ

�(T )
2�(T )−�(t) if ϑ ≥ 1

.

Proof Similarly as Theorem 3.3, we know that

∥∥∥uδ
μ,β (·, t) − u (·, t)

∥∥∥ ≤
∥∥∥uδ

μ,β (·, t) − uμ,β (·, t)
∥∥∥ + ∥∥ûμ,β (·, t) − û (·, t)∥∥
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≤ μ
�(t)
�(T )

−1
(
‖g1 − g2‖ + √

T ‖�1 − �2‖L2(0,T ;L2(R))

)

+ μ

∥∥∥∥∥ e|ξ |2α�(T )

1 + μe|ξ |2α�(T )
û (·, t)

∥∥∥∥∥ .

By Proposition 3.2, one has∥∥∥uδ
μ,β (·, t) − u (·, t)

∥∥∥
≤
⎧⎨
⎩
(
1 + √

T
)

μ
�(t)
�(T )

−1
δ + μϑ

∥∥∥eϑ |·|2α�(T )û (·, t)
∥∥∥ if ϑ ∈ (0, 1)(

1 + √
T
)

μ
�(t)
�(T )

−1
δ + μ

∥∥∥eϑ |·|2α�(T )û (·, t)
∥∥∥ if ϑ ≥ 1

≤
⎧⎨
⎩
(
1 + √

T
)

μ
�(t)
�(T )

−1
δ + μϑE1 if ϑ ∈ (0, 1)(

1 + √
T
)

μ
�(t)
�(T )

−1
δ + μE1 if ϑ ≥ 1

≤

⎧⎪⎨
⎪⎩
(
2 + √

T
)
E

�(T )−�(t)
(1+ϑ)�(T )−�(t)
1 δ

ϑ�(T )
(1+ϑ)�(T )−�(t) if ϑ ∈ (0, 1)(

2 + √
T
)
E

�(T )−�(t)
2�(T )−�(t)
1 δ

�(T )
2�(T )−�(t) if ϑ ≥ 1

.

The proof is completed. 	

Some comments on the a priori bound (3.7). It is well known in the regularization
theory that to obtain the convergence rate between the regularized and exact solution,
one needs some a priori information on the exact solution. In the present paper, we
use an a priori condition as in (3.7). Let ϕ be the initial status of problem (1.1). At
the initial time t = 0, the a priori condition (3.7) is equivalent to the assumption that
ϕ ∈ Hp (R). However, for t > 0 and 0 ≤ p ≤ α, it follows from Theorem 2.2 (part a)
that one just needs ϕ ∈ L2(R) and the source function � belongs to L2

(
0, T ; L2 (R)

)
to result u(·, t) ∈ Hp (R). Hence, the a priori condition (3.7) is not a very strict
condition. Therefore, from our point of view, the technique in this paper is applicable
to a wide class of functions.

4 The Numerical Illustration

In this section, we will illustrate theoretical results in Sect. 3 through some specific
numerical examples. In fact for numerical purposes, we are usually interested in the
bounded domain. In this spirit, let L be a positive number, we consider in this section
the numerical solution of the following backward problem

⎧⎪⎨
⎪⎩
ut (x, t) + λ(t)(−�)αu(x, t) = �(x, t), t ∈ [0, T ], x ∈ [−L, L],
u(x, T ) = g(x), x ∈ [−L, L],
u(x, t) = 0, t ∈ [0, T ], x /∈ [−L, L].

(4.1)
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For the fractional diffusion model, it is very difficult to find an analytical solution of
the problem (4.1). Thus, we are not going to find an analytical solution of (4.1) in this
section. Instead, a fully discrete scheme will be adapted to derive an approximation
of (4.1). To do so, let us consider the initial problem associated with problem (1.1),
i.e., the following problem

⎧⎪⎨
⎪⎩
ut (x, t) + λ(t)(−�)αu(x, t) = �(x, t), t ∈ [0, T ], x ∈ [−L, L],
u(x, 0) = ϕ(x), x ∈ [−L, L],
u(x, t) = 0, t ∈ [0, T ], x /∈ [−L, L].

(4.2)

Since (4.2) is a well-posed problem, a finite difference scheme will be very effective
to numerically solve (4.2). We use the following simulation strategy:

• Step 1: Using the finite difference scheme to solve (4.2). After this step, one may
obtain the final data g(x) := u(x, T ).

• Step 2: Perturbing the final data to obtain the measured final data

gε(x) = u(x, T ) (1 + εrand()) , (4.3)

where the command rand() returns the random value in (0, 1).
• Step 3: Using (3.5) to construct the Fourier transform of the regularized solution.
In this step, the discrete Fourier transform will be adapted.

• Step 4: Using the inverse discrete Fourier transform to obtain the regularized
solution.

For the finite difference scheme in step 1, we follow the well-known scheme proposed
in [21]. For other numerical methods dealing with the fractional Laplacian, the reader
may refer to [1,16,17]. Denote N and M the number of grid points in the space and
time interval, respectively. Let

{
x j
}N
j=0 be a space-discretization of [−L, L] with the

mesh size h = 2L
N and {tm}Mm=0 be a time-discretization of [0, T ] with the mesh size

ρ = T
M . Let umj be the finite difference approximation to u(x j , tm). We have:

• For 0 ≤ m ≤ M , due to the boundary condition, one has

um0 = umN = 0.

• For m = 0, thanks the initial condition of (4.2), for 0 ≤ j ≤ N , we have

u0j = ϕ(x j ). (4.4)
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• For 1 ≤ m ≤ M and 1 ≤ j ≤ N − 1, we use the following forward scheme

um+1
j = umj

− ρλm+1

2 cos (απ) hα

⎛
⎝ j+1∑

k=0

(−1)k
(
2α
k

)
unj+1−k +

N− j+1∑
k=0

(−1)k
(
2α
k

)
unj−1+k

⎞
⎠

+ ρ�
(
x j , tm+1

)
(4.5)

where λm = λ(tm).
Denote Um

j = uε(x j , tm) the regularized solution with respects to the noisy data gε,
the following discrete error measure will be calculated

E(tm) =
√√√√ 1

N + 1

N∑
j=0

∣∣∣Um
j − umj

∣∣∣2,

RE (tm) =
√√√√ N∑

j=0

∣∣∣Um
j − umj

∣∣∣2/
√√√√ N∑

j=0

∣∣∣umj ∣∣∣2.

Here, E(tm) and RE (tm) denote the discrete root mean square error and the relative
root mean square error at time tm . Fixing L = 10, T = 1, N = 100, M = 100, λ(t) =
2t + 1, let us consider the following examples.

Example 1 In this example, we work with a smooth initial data. For α = 0.6, the initial
data and source term in example 1 are given by

ϕ(x) = e− x4

L2 , �(x, t) = et
2− x4

L2 . (4.6)

Example 2 In this example, we work with a non-smooth initial data. For α = 0.9, the
initial data and source term in example 2 are given by

ϕ(x) =
{
2, |x | ≤ 0.5L,

1, 0.5L < |x | ≤ L,
(4.7)

�(x, t) =
{
2t, |x | ≤ 0.5L,

t, 0.5L < |x | ≤ L.
(4.8)

With the data as in these example, we have Figs. 1 and 2 and Tables 1 and 2.
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Fig. 1 Example 1 with α = 0.6: The exact solution (solid line) and regularized solution with ε = 10−1

(asterisk line) and ε = 10−2 (circle line) at various points of time

Table 1 The table of error in Example 1

α = 0.6 At t = 0.9 At t = 0.8

ε E(0.9) RE (0.9) E(0.8) RE (0.8)

10−1 0.2082481499 0.2247021077 0.1866373549 0.2167951689

10−2 0.0503317476 0.0543085246 0.0445302435 0.0517256670

10−3 0.0255936893 0.0276158801 0.0323046766 0.0375246307

α = 0.6 At t = 0.5 At t = 0.4

ε E(0.5) RE (0.5) E(0.4) RE (0.4)

10−1 0.1537737147 0.2166313275 0.1534856565 0.2301838364

10−2 0.0767795512 0.1081644944 0.0986265922 0.1479111983

10−3 0.0745537113 0.1050288047 0.0907426718 0.1360876111
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Fig. 2 Example 2 with α = 0.9: The exact solution (solid line) and regularized solution with ε = 10−1

(asterisk line) and ε = 10−2 (circle line) at various points of time

Table 2 The table of error in Example 2

α = 0.9 At t = 0.9 At t = 0.8

ε E(0.9) RE (0.9) E(0.8) RE (0.8)

10−1 0.2299011126 0.1085325351 0.2279571820 0.1139088496

10−2 0.1088747479 0.0513979783 0.1298666025 0.0648935697

10−3 0.0759839495 0.0358707732 0.1047227320 0.0523293270

α = 0.9 At t = 0.5 At t = 0.4

ε E(0.5) RE (0.5) E(0.4) RE (0.4)

10−1 0.2612141145 0.1505391034 0.31126325 0.1857517815

10−2 0.230726515 0.1329689353 0.2720464216 0.1623484541

10−3 0.2293737927 0.1321893542 0.2710629609 0.1617615568
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5 Conclusion

In this paper, the forward and backward problems associated with space-fractional
diffusion equations are investigated. In particular, we derived some regularity results
for the forward problem. Next, we provided detailed proof of the ill-posedness of the
backward problem and further proposed a regularization method to achieve Hölder
approximation to the exact solution. As a potential future work, we wish to study a
more general model where the diffusivity factor can be a more general function. For
example, λ := λ(x, t) or λ := λ(x, t, u).
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